Semi-supervised Ranking Pursuit

07/02/2013
by   Evgeni Tsivtsivadze, et al.
0

We propose a novel sparse preference learning/ranking algorithm. Our algorithm approximates the true utility function by a weighted sum of basis functions using the squared loss on pairs of data points, and is a generalization of the kernel matching pursuit method. It can operate both in a supervised and a semi-supervised setting and allows efficient search for multiple, near-optimal solutions. Furthermore, we describe the extension of the algorithm suitable for combined ranking and regression tasks. In our experiments we demonstrate that the proposed algorithm outperforms several state-of-the-art learning methods when taking into account unlabeled data and performs comparably in a supervised learning scenario, while providing sparser solutions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset