Semi-supervised Target-level Sentiment Analysis via Variational Autoencoder

10/24/2018
by   Weidi Xu, et al.
0

Target-level aspect-based sentiment analysis (TABSA) is a long-standing challenge, which requires fine-grained semantical reasoning about a certain aspect. As manual annotation over the aspects is laborious and time-consuming, the amount of labeled data is limited for supervised learning. This paper proposes a semi-supervised method for the TABSA problem based on the Variational Autoencoder (VAE). VAE is a powerful deep generative model which models the latent distribution via variational inference. By disentangling the latent representation into the aspect-specific sentiment and the context, the method implicitly induces the underlying sentiment prediction for the unlabeled data, which then benefits the TABSA classifier. Our method is classifier-agnostic, i.e., the classifier is an independent module and various advanced supervised models can be integrated. Experimental results are obtained on the SemEval 2014 task 4 and show that our method is effective with four classical classifiers. The proposed method outperforms two general semi-supervised methods and achieves competitive performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro