SENS: Sketch-based Implicit Neural Shape Modeling
We present SENS, a novel method for generating and editing 3D models from hand-drawn sketches, including those of an abstract nature. Our method allows users to quickly and easily sketch a shape, and then maps the sketch into the latent space of a part-aware neural implicit shape architecture. SENS analyzes the sketch and encodes its parts into ViT patch encoding, then feeds them into a transformer decoder that converts them to shape embeddings, suitable for editing 3D neural implicit shapes. SENS not only provides intuitive sketch-based generation and editing, but also excels in capturing the intent of the user's sketch to generate a variety of novel and expressive 3D shapes, even from abstract sketches. We demonstrate the effectiveness of our model compared to the state-of-the-art using objective metric evaluation criteria and a decisive user study, both indicating strong performance on sketches with a medium level of abstraction. Furthermore, we showcase its intuitive sketch-based shape editing capabilities.
READ FULL TEXT