Sensitivity Analysis on Transferred Neural Architectures of BERT and GPT-2 for Financial Sentiment Analysis

07/07/2022
by   Tracy Qian, et al.
0

The explosion in novel NLP word embedding and deep learning techniques has induced significant endeavors into potential applications. One of these directions is in the financial sector. Although there is a lot of work done in state-of-the-art models like GPT and BERT, there are relatively few works on how well these methods perform through fine-tuning after being pre-trained, as well as info on how sensitive their parameters are. We investigate the performance and sensitivity of transferred neural architectures from pre-trained GPT-2 and BERT models. We test the fine-tuning performance based on freezing transformer layers, batch size, and learning rate. We find the parameters of BERT are hypersensitive to stochasticity in fine-tuning and that GPT-2 is more stable in such practice. It is also clear that the earlier layers of GPT-2 and BERT contain essential word pattern information that should be maintained.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset