Sensitivity of collective outcomes identifies pivotal components

09/23/2019
by   Edward D. Lee, et al.
0

A social system is susceptible to perturbation when its collective properties depend sensitively on a few, pivotal components. Using the information geometry of minimal models from statistical physics, we develop an approach to identify pivotal components to which coarse-grained, or aggregate, properties are sensitive. As an example we introduce our approach on a reduced toy model with a median voter who always votes in the majority. With this example, we construct the Fisher information matrix with respect to the distribution of majority-minority divisions and study features of the matrix that pinpoint the unique role of the median. More generally, these features identify pivotal blocs that precisely determine collective outcomes generated by a complex network of interactions. Applying our approach to data sets from political voting, finance, and Twitter, we find remarkable variety from systems dominated by a median-like component (e.g., California State Assembly) to those without any single special component (e.g., Alaskan Supreme Court). Other systems (e.g., S&P sector indices) show varying levels of heterogeneity in between these extremes. By providing insight into such sensitivity, our information-geometric approach presents a quantitative framework for considering how nominees might change a judicial bench, serve as a measure of notable temporal variation in financial indices, or help analyze the robustness of institutions to targeted perturbation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset