Sensorimotor Input as a Language Generalisation Tool: A Neurorobotics Model for Generation and Generalisation of Noun-Verb Combinations with Sensorimotor Inputs
The paper presents a neurorobotics cognitive model to explain the understanding and generalisation of nouns and verbs combinations when a vocal command consisting of a verb-noun sentence is provided to a humanoid robot. This generalisation process is done via the grounding process: different objects are being interacted, and associated, with different motor behaviours, following a learning approach inspired by developmental language acquisition in infants. This cognitive model is based on Multiple Time-scale Recurrent Neural Networks (MTRNN).With the data obtained from object manipulation tasks with a humanoid robot platform, the robotic agent implemented with this model can ground the primitive embodied structure of verbs through training with verb-noun combination samples. Moreover, we show that a functional hierarchical architecture, based on MTRNN, is able to generalise and produce novel combinations of noun-verb sentences. Further analyses of the learned network dynamics and representations also demonstrate how the generalisation is possible via the exploitation of this functional hierarchical recurrent network.
READ FULL TEXT