Sentence-level quality estimation by predicting HTER as a multi-component metric

07/19/2017
by   Eleftherios Avramidis, et al.
0

This submission investigates alternative machine learning models for predicting the HTER score on the sentence level. Instead of directly predicting the HTER score, we suggest a model that jointly predicts the amount of the 4 distinct post-editing operations, which are then used to calculate the HTER score. This also gives the possibility to correct invalid (e.g. negative) predicted values prior to the calculation of the HTER score. Without any feature exploration, a multi-layer perceptron with 4 outputs yields small but significant improvements over the baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset