Sentiment Analysis of Citations Using Word2vec

04/01/2017
by   Haixia Liu, et al.
0

Citation sentiment analysis is an important task in scientific paper analysis. Existing machine learning techniques for citation sentiment analysis are focusing on labor-intensive feature engineering, which requires large annotated corpus. As an automatic feature extraction tool, word2vec has been successfully applied to sentiment analysis of short texts. In this work, I conducted empirical research with the question: how well does word2vec work on the sentiment analysis of citations? The proposed method constructed sentence vectors (sent2vec) by averaging the word embeddings, which were learned from Anthology Collections (ACL-Embeddings). I also investigated polarity-specific word embeddings (PS-Embeddings) for classifying positive and negative citations. The sentence vectors formed a feature space, to which the examined citation sentence was mapped to. Those features were input into classifiers (support vector machines) for supervised classification. Using 10-cross-validation scheme, evaluation was conducted on a set of annotated citations. The results showed that word embeddings are effective on classifying positive and negative citations. However, hand-crafted features performed better for the overall classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset