Separated-Spectral-Distribution Estimation Based on Bayesian Inference with Single RGB Camera

06/01/2021
by   Yuma Kinoshita, et al.
0

In this paper, we propose a novel method for separately estimating spectral distributions from images captured by a typical RGB camera. The proposed method allows us to separately estimate a spectral distribution of illumination, reflectance, or camera sensitivity, while recent hyperspectral cameras are limited to capturing a joint spectral distribution from a scene. In addition, the use of Bayesian inference makes it possible to take into account prior information of both spectral distributions and image noise as probability distributions. As a result, the proposed method can estimate spectral distributions in a unified way, and it can enhance the robustness of the estimation against noise, which conventional spectral-distribution estimation methods cannot. The use of Bayesian inference also enables us to obtain the confidence of estimation results. In an experiment, the proposed method is shown not only to outperform conventional estimation methods in terms of RMSE but also to be robust against noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset