Sequential knockoffs for continuous and categorical predictors: with application to a large Psoriatic Arthritis clinical trial pool

10/27/2020
by   Matthias Kormaksson, et al.
0

Knockoffs provide a general framework for controlling the false discovery rate when performing variable selection. Much of the Knockoffs literature focuses on theoretical challenges and we recognize a need for bringing some of the current ideas into practice. In this paper we propose a sequential algorithm for generating knockoffs when underlying data consists of both continuous and categorical (factor) variables. Further, we present a heuristic multiple knockoffs approach that offers a practical assessment of how robust the knockoff selection process is for a given data set. We conduct extensive simulations to validate performance of the proposed methodology. Finally, we demonstrate the utility of the methods on a large clinical data pool of more than 2,000 patients with psoriatic arthritis evaluated in 4 clinical trials with an IL-17A inhibitor, secukinumab (Cosentyx), where we determine prognostic factors of a well established clinical outcome. The analyses presented in this paper could provide a wide range of applications to commonly encountered data sets in medical practice and other fields where variable selection is of particular interest.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset