Sequential Motion Planning for Bipedal Somersault via Flywheel SLIP and Momentum Transmission with Task Space Control
In this paper, we present a sequential motion planning and control method for generating somersaults on bipedal robots. The somersault (backflip or frontflip) is considered as a coupling between an axile hopping motion and a rotational motion about the center of mass of the robot; these are encoded by a hopping Spring-loaded Inverted Pendulum (SLIP) model and the rotation of a Flywheel, respectively. We thus present the Flywheel SLIP model for generating the desired motion on the ground phase. In the flight phase, we present a momentum transmission method to adjust the orientation of the lower body based on the conservation of the centroidal momentum. The generated motion plans are realized on the full-dimensional robot via momentum-included task space control. Finally, the proposed method is implemented on a modified version of the bipedal robot Cassie in simulation wherein multiple somersault motions are generated.
READ FULL TEXT