Set-Based Tests for Genetic Association Using the Generalized Berk-Jones Statistic

10/06/2017
by   Ryan Sun, et al.
0

Studying the effects of groups of Single Nucleotide Polymorphisms (SNPs), as in a gene, genetic pathway, or network, can provide novel insight into complex diseases, above that which can be gleaned from studying SNPs individually. Common challenges in set-based genetic association testing include weak effect sizes, correlation between SNPs in a SNP-set, and scarcity of signals, with single-SNP effects often ranging from extremely sparse to moderately sparse in number. Motivated by these challenges, we propose the Generalized Berk-Jones (GBJ) test for the association between a SNP-set and outcome. The GBJ extends the Berk-Jones (BJ) statistic by accounting for correlation among SNPs, and it provides advantages over the Generalized Higher Criticism (GHC) test when signals in a SNP-set are moderately sparse. We also provide an analytic p-value calculation procedure for SNP-sets of any finite size. Using this p-value calculation, we illustrate that the rejection region for GBJ can be described as a compromise of those for BJ and GHC. We develop an omnibus statistic as well, and we show that this omnibus test is robust to the degree of signal sparsity. An additional advantage of our method is the ability to conduct inference using individual SNP summary statistics from a genome-wide association study. We evaluate the finite sample performance of the GBJ though simulation studies and application to gene-level association analysis of breast cancer risk.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset