Shapley Effect Estimation using Polynomial Chaos

01/11/2023
by   Adrian Stein, et al.
0

This paper presents an approach for estimating Shapley effects for use as global sensitivity metrics to quantify the relative importance of uncertain model parameters. Polynomial Chaos expansion, a well established approach for developing surrogate models is proposed to be used to estimate Shapley effects. Polynomial Chaos permits the transformation of a stochastic process to a deterministic model which can then be used to efficiently evaluate statistical moments of the quantity of interest. These moments include conditional variances which are algebraically mapped to Shapley effects. The polynomial chaos based estimates of Shapley effects are validated using Monte Carlo simulations and tested on the benchmark Ishigami function and on the dynamic SEIR epidemic model and the Bergman Type 1 diabetes model. The results illustrate the correct ranking of uncertain variables for the Ishigami function in contrast to the Sobol indices and illustrates the time-varying rank ordering of the model parameters for the dynamic models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset