Shared Memory-contention-aware Concurrent DNN Execution for Diversely Heterogeneous System-on-Chips

08/10/2023
by   Ismet Dagli, et al.
0

Two distinguishing features of state-of-the-art mobile and autonomous systems are 1) there are often multiple workloads, mainly deep neural network (DNN) inference, running concurrently and continuously; and 2) they operate on shared memory system-on-chips (SoC) that embed heterogeneous accelerators tailored for specific operations. State-of-the-art lacks efficient performance and resource management techniques necessary to either maximize total system throughput or minimize end-to-end workload latency. In this work, we propose HaX-CoNN, a novel scheme that characterizes and maps layers in concurrently executing DNN inference workloads to a diverse set of accelerators within a SoC. Our scheme uniquely takes per-layer execution characteristics, shared memory (SM) contention, and inter-accelerator transitions into account to find optimal schedules. We evaluate HaX-CoNN on NVIDIA Orin, NVIDIA Xavier, and Qualcomm Snapdragon 865 SoCs. Our experimental results indicate that HaX-CoNN minimizes memory contention by up to 45 up to 32

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro