Shellability is hard even for balls

11/15/2022
by   Pavel Paták, et al.
0

The main goal of this paper is to show that shellability is NP-hard for triangulated d-balls (this also gives hardness for triangulated d-manifolds/d-pseudomanifolds with boundary) as soon as d is at least 3. This extends our earlier work with Goaoc, Patáková and Wagner on hardness of shellability of 2-complexes and answers some questions implicitly raised by Danaraj and Klee in 1978 and explicitly mentioned by Santamaría-Galvis and Woodroofe. Together with the main goal, we also prove that collapsibility is NP-hard for 3-complexes embeddable in the 3-space, extending an earlier work of the second author and answering an open question mentioned by Cohen, Fasy, Miller, Nayyeri, Peng and Walkington; and that shellability is NP-hard for 2-complexes embeddable in the 3-space, answering another question of Santamaría-Galvis and Woodroofe (in a slightly stronger form than what is given by the main result).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset