Short-term forecasting of Italian gas demand
Forecasting natural gas demand is a key problem for energy providers, as it allows for efficient pipe reservation and power plant allocation, and enables effective price forecasting. We propose a study of Italian gas demand, with particular focus on industrial and thermoelectric components. To the best of our knowledge, this is the first work about these topics. After a preliminary discussion on the characteristics of gas demand, we apply several statistical learning models to perform day-ahead forecasting, including regularized linear models, random forest, support vector regression and neural networks. Moreover, we introduce four simple ensemble models and we compare their performance with the one of basic forecasters. The out-of-sample Mean Absolute Error (MAE) achieved on 2017 by our best ensemble model is 5.16 Millions of Standard Cubic Meters (MSCM), lower than 9.57 MSCM obtained by the predictions issued by SNAM, the Italian Transmission System Operator (TSO).
READ FULL TEXT