Shortcut Removal for Improved OOD-Generalization
Machine learning is a data-driven discipline, and learning success is largely dependent on the quality of the underlying data sets. However, it is becoming increasingly clear that even high performance on held-out test data does not necessarily mean that a model generalizes or learns anything meaningful at all. One reason for this is the presence of machine learning shortcuts, i.e., hints in the data that are predictive but accidental and semantically unconnected to the problem. We present a new approach to detect such shortcuts and a technique to automatically remove them from datasets. Using an adversarially trained lens, any small and highly predictive clues in images can be detected and removed. We show that this approach 1) does not cause degradation of model performance in the absence of these shortcuts, and 2) reliably identifies and neutralizes shortcuts from different image datasets. In our experiments, we are able to recover up to 93,8 shortcuts. Finally, we apply our model to a real-world dataset from the medical domain consisting of chest x-rays and identify and remove several types of shortcuts that are known to hinder real-world applicability. Thus, we hope that our proposed approach fosters real-world applicability of machine learning.
READ FULL TEXT