Signal-to-noise ratio aware minimaxity and higher-order asymptotics
Since its development, the minimax framework has been one of the corner stones of theoretical statistics, and has contributed to the popularity of many well-known estimators, such as the regularized M-estimators for high-dimensional problems. In this paper, we will first show through the example of sparse Gaussian sequence model, that some of the theoretical results under the classical minimax framework are insufficient for elaborating empirical observations. In particular, both hard and soft thresholding estimators are (asymptotically) minimax, however, in practice they often exhibit sub-optimal performances at various signal-to-noise ratio (SNR) levels. The first contribution of this paper is to demonstrate that this issue can be resolved if the signal-to-noise ratio is taken into account in the construction of the parameter space. We call the resulting minimax framework the signal-to-noise ratio aware minimaxity. The second contribution of this paper is to showcase how one can use higher-order asymptotics to obtain accurate approximations of the SNR-aware minimax risk and discover minimax estimators. The theoretical findings obtained from this refined minimax framework provide new insights and practical guidance for the estimation of sparse signals.
READ FULL TEXT