Simulating local fields in carbon nanotube reinforced composites for infinite strip with voids
We consider the steady heat conduction problem within a thermal isotropic and homogeneous infinite strip composite reinforced by uniformly and randomly distributed non-overlapping carbon nanotubes (CNTs) and containing voids. We treat the CNTs as thin perfectly conducting elliptic inclusions and assume the voids to be of circular shape and act as barriers to heat flow. We also impose isothermal conditions on the external boundaries by assuming the lower infinite wall to be a heater under a given temperature, and the upper wall to be a cooler that can be held at a lower fixed temperature. The equations for the temperature distribution are governed by the two-dimensional Laplace equation with mixed Dirichlet-Neumann boundary conditions. The resulting boundary value problem is solved using the boundary integral equation with the generalized Neumann kernel. We illustrate the performance of the proposed method through several numerical examples including the case of the presence a large number of CNTs and voids.
READ FULL TEXT