Simulation study on the fleet performance of shared autonomous bicycles
Rethinking cities is now more imperative than ever, as society faces global challenges such as population growth and climate change. The design of cities can not be abstracted from the design of its mobility system, and, therefore, efficient solutions must be found to transport people and goods throughout the city in an ecological way. An autonomous bicycle-sharing system would combine the most relevant benefits of vehicle sharing, electrification, autonomy, and micro-mobility, increasing the efficiency and convenience of bicycle-sharing systems and incentivizing more people to bike and enjoy their cities in an environmentally friendly way. Due to the uniqueness and radical novelty of introducing autonomous driving technology into bicycle-sharing systems and the inherent complexity of these systems, there is a need to quantify the potential impact of autonomy on fleet performance and user experience. This paper presents an ad-hoc agent-based simulator that provides an in-depth understanding of the fleet behavior of autonomous bicycle-sharing systems in realistic scenarios, including a rebalancing system based on demand prediction. In addition, this work describes the impact of different parameters on system efficiency and service quality and quantifies the extent to which an autonomous system would outperform current bicycle-sharing schemes. The obtained results show that with a fleet size three and a half times smaller than a station-based system and eight times smaller than a dockless system, an autonomous system can provide overall improved performance and user experience even with no rebalancing. These findings indicate that the remarkable efficiency of an autonomous bicycle-sharing system could compensate for the additional cost of autonomous bicycles.
READ FULL TEXT