Simultaneous Inference of Trend in Partially Linear Time Series

12/19/2022
by   Jiaqi Li, et al.
0

We introduce a new methodology to conduct simultaneous inference of non-parametric trend in a partially linear time series regression model where the trend is a multivariate unknown function. In particular, we construct a simultaneous confidence region (SCR) for the trend function by extending the high-dimensional Gaussian approximation to dependent processes with continuous index sets. Our results allow for a more general dependence structure compared to previous works and are widely applicable to a variety of linear and non-linear auto-regressive processes. We demonstrate the validity of our proposed inference approach by examining the finite-sample performance in the simulation study. The method is also applied to a real example in time series: the forward premium regression, where we construct the SCR for the foreign exchange risk premium in the exchange rate data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset