Single-Image-Based Deep Learning for Segmentation of Early Esophageal Cancer Lesions
Accurate segmentation of lesions is crucial for diagnosis and treatment of early esophageal cancer (EEC). However, neither traditional nor deep learning-based methods up to today can meet the clinical requirements, with the mean Dice score - the most important metric in medical image analysis - hardly exceeding 0.75. In this paper, we present a novel deep learning approach for segmenting EEC lesions. Our approach stands out for its uniqueness, as it relies solely on a single image coming from one patient, forming the so-called "You-Only-Have-One" (YOHO) framework. On one hand, this "one-image-one-network" learning ensures complete patient privacy as it does not use any images from other patients as the training data. On the other hand, it avoids nearly all generalization-related problems since each trained network is applied only to the input image itself. In particular, we can push the training to "over-fitting" as much as possible to increase the segmentation accuracy. Our technical details include an interaction with clinical physicians to utilize their expertise, a geometry-based rendering of a single lesion image to generate the training set (the biggest novelty), and an edge-enhanced UNet. We have evaluated YOHO over an EEC data-set created by ourselves and achieved a mean Dice score of 0.888, which represents a significant advance toward clinical applications.
READ FULL TEXT