Singleton-type bounds for list-decoding and list-recovery, and related results
List-decoding and list-recovery are important generalizations of unique decoding that received considerable attention over the years. However, the optimal trade-off among list-decoding (resp. list-recovery) radius, list size, and the code rate are not fully understood in both problems. This paper takes a step towards this direction when the list size is a given constant and the alphabet size is large (as a function of the code length). We prove a new Singleton-type upper bound for list-decodable codes, which improves upon the previously known bound by roughly a factor of 1/L, where L is the list size. We also prove a Singleton-type upper bound for list-recoverable codes, which is to the best of our knowledge, the first such bound for list-recovery. We apply these results to obtain new lower bounds that are optimal up to a multiplicative constant on the list size for list-decodable and list-recoverable codes with rates approaching capacity. Moreover, we show that list-decodable nonlinear codes can strictly outperform list-decodable linear codes. More precisely, we show that there is a gap for a wide range of parameters, which grows fast with the alphabet size, between the size of the largest list-decodable nonlinear code and the size of the largest list-decodable linear codes. This is achieved by a novel connection between list-decoding and the notion of sparse hypergraphs in extremal combinatorics. We remark that such a gap is not known to exist in the problem of unique decoding. Lastly, we show that list-decodability or recoverability of codes implies in some sense good unique decodability.
READ FULL TEXT