Singular value decomposition of the wave forward operator with radial variable coefficients
Photoacoustic tomography (PAT) is a novel and promising technology in hybrid medical imaging that involves generating acoustic waves in the object of interest by stimulating electromagnetic energy. The acoustic wave is measured outside the object. One of the key mathematical problems in PAT is the reconstruction of the initial function that contains diagnostic information from the solution of the wave equation on the surface of the acoustic transducers. Herein, we propose a wave forward operator that assigns an initial function to obtain the solution of the wave equation on a unit sphere. Under the assumption of the radial variable speed of ultrasound, we obtain the singular value decomposition of this wave forward operator by determining the orthonormal basis of a certain Hilbert space comprising eigenfunctions. In addition, numerical simulation results obtained using the continuous Galerkin method are utilized to validate the inversion resulting from the singular value decomposition.
READ FULL TEXT