SISA: Securing Images by Selective Alteration

06/20/2021
by   Prutha Gaherwar, et al.
0

With an increase in mobile and camera devices' popularity, digital content in the form of images has increased drastically. As personal life is being continuously documented in pictures, the risk of losing it to eavesdroppers is a matter of grave concern. Secondary storage is the most preferred medium for the storage of personal and other images. Our work is concerned with the security of such images. While encryption is the best way to ensure image security, full encryption and decryption is a computationally-intensive process. Moreover, as cameras are getting better every day, image quality, and thus, the pixel density has increased considerably. The increased pixel density makes encryption and decryption more expensive. We, therefore, delve into selective encryption and selective blurring based on the region of interest. Instead of encrypting or blurring the entire photograph, we only encode selected regions of the image. We present a comparative analysis of the partial and full encryption of the photos. This kind of encoding will help us lower the encryption overhead without compromising security. The applications utilizing this technique will become more usable due to the reduction in the decryption time. Additionally, blurred images being more readable than encrypted ones, allowed us to define the level of security. We leverage the machine learning algorithms like Mask-RCNN (Region-based convolutional neural network) and YOLO (You Only Look Once) to select the region of interest. These algorithms have set new benchmarks for object recognition. We develop an end to end system to demonstrate our idea of selective encryption.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset