SLMGAN: Exploiting Speech Language Model Representations for Unsupervised Zero-Shot Voice Conversion in GANs

07/18/2023
by   Yinghao Aaron Li, et al.
0

In recent years, large-scale pre-trained speech language models (SLMs) have demonstrated remarkable advancements in various generative speech modeling applications, such as text-to-speech synthesis, voice conversion, and speech enhancement. These applications typically involve mapping text or speech inputs to pre-trained SLM representations, from which target speech is decoded. This paper introduces a new approach, SLMGAN, to leverage SLM representations for discriminative tasks within the generative adversarial network (GAN) framework, specifically for voice conversion. Building upon StarGANv2-VC, we add our novel SLM-based WavLM discriminators on top of the mel-based discriminators along with our newly designed SLM feature matching loss function, resulting in an unsupervised zero-shot voice conversion system that does not require text labels during training. Subjective evaluation results show that SLMGAN outperforms existing state-of-the-art zero-shot voice conversion models in terms of naturalness and achieves comparable similarity, highlighting the potential of SLM-based discriminators for related applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro