Smallest covering regions and highest density regions for discrete distributions

11/04/2022
by   Ben O'Neill, et al.
0

This paper examines the problem of computing a canonical smallest covering region for an arbitrary discrete probability distribution. This optimisation problem is similar to the classical 0-1 knapsack problem, but it involves optimisation over a set that may be countably infinite, raising a computational challenge that makes the problem non-trivial. To solve the problem we present theorems giving useful conditions for an optimising region and we develop an iterative one-at-a-time computational method to compute a canonical smallest covering region. We show how this can be programmed in pseudo-code and we examine the performance of our method. We compare this algorithm with other algorithms available in statistical computation packages to compute HDRs. We find that our method is the only one that accurately computes HDRs for arbitrary discrete distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro