Smart Data based Ensemble for Imbalanced Big Data Classification
Big Data scenarios pose a new challenge to traditional data mining algorithms, since they are not prepared to work with such amount of data. Smart Data refers to data of enough quality to improve the outcome from a data mining algorithm. Existing data mining algorithms unability to handle Big Datasets prevents the transition from Big to Smart Data. Automation in data acquisition that characterizes Big Data also brings some problems, such as differences in data size per class. This will lead classifiers to lean towards the most represented classes. This problem is known as imbalanced data distribution, where one class is underrepresented in the dataset. Ensembles of classifiers are machine learning methods that improve the performance of a single base classifier by the combination of several of them. Ensembles are not exempt from the imbalanced classification problem. To deal with this issue, the ensemble method have to be designed specifically. In this paper, a data preprocessing ensemble for imbalanced Big Data classification is presented, with focus on two-class problems. Experiments carried out in 21 Big Datasets have proved that our ensemble classifier outperforms classic machine learning models with an added data balancing method, such as Random Forests.
READ FULL TEXT