Smartphone Sensors for Modeling Human-Computer Interaction: General Outlook and Research Datasets for User Authentication
In this paper we list the sensors commonly available in modern smartphones and provide a general outlook of the different ways these sensors can be used for modeling the interaction between human and smartphones. We then provide a taxonomy of applications that can exploit the signals originated by these sensors in three different dimensions, depending on the main information content embedded in the signals exploited in the application: neuromotor skills, cognitive functions, and behaviors/routines. We then summarize a representative selection of existing research datasets in this area, with special focus on applications related to user authentication, including key features and a selection of the main research results obtained on them so far. Then, we perform the experimental work using the HuMIdb database (Human Mobile Interaction database), a novel multimodal mobile database that includes 14 mobile sensors captured from 600 participants. We evaluate a biometric authentication system based on simple linear touch gestures using a Siamese Neural Network architecture. Very promising results are achieved with accuracies up to 87 gesture.
READ FULL TEXT