Soft Actor-Critic Deep Reinforcement Learning for Fault Tolerant Flight Control

02/16/2022
by   Killian Dally, et al.
8

Fault-tolerant flight control faces challenges, as developing a model-based controller for each unexpected failure is unrealistic, and online learning methods can handle limited system complexity due to their low sample efficiency. In this research, a model-free coupled-dynamics flight controller for a jet aircraft able to withstand multiple failure types is proposed. An offline trained cascaded Soft Actor-Critic Deep Reinforcement Learning controller is successful on highly coupled maneuvers, including a coordinated 40 degree bank climbing turn with a normalized Mean Absolute Error of 2.64 The controller is robust to six failure cases, including the rudder jammed at -15 deg, the aileron effectiveness reduced by 70 and a backward c.g. shift as the response is stable and the climbing turn is completed successfully. Robustness to biased sensor noise, atmospheric disturbances, and to varying initial flight conditions and reference signal shapes is also demonstrated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset