Solving a Path Planning Problem in a Partially Known Environment using a Swarm Algorithm
This paper proposes a path planning strategy for an Autonomous Ground Vehicle (AGV) navigating in a partially known environment. Global path planning is performed by first using a spatial database of the region to be traversed containing selected attributes such as height data and soil information from a suitable spatial database. The database is processed using a biomimetic swarm algorithm that is inspired by the nest building strategies followed by termites. Local path planning is performed online utilizing information regarding contingencies that affect the safe navigation of the AGV from various sensors. The simulation discussed has been implemented on the open source Player-Stage-Gazebo platform.
READ FULL TEXT