Solving Inverse Computational Imaging Problems using Deep Pixel-level Prior

02/27/2018
by   Akshat Dave, et al.
0

Generative models based on deep neural networks are quite powerful in modelling natural image statistics. In particular, deep auto-regressive models provide state of the art performance, in terms of log likelihood scores, by modelling tractable densities over the image manifold. In this work, we employ a learned deep auto-regressive model as data prior for solving different inverse problems in computational imaging. We demonstrate how our approach can reconstruct images which have better pixel-level consistencies, as compared to the existing deep auto-encoder based approaches. We also show how randomly dropping the update of some pixels in every iteration helps in a better image reconstruction. We test our approach on three computational imaging setups: Single Pixel Camera, LiSens and FlatCam with real and simulated measurements. We obtain better reconstructions than the state-of-the-art methods for these problems, in terms of both perceptual quality and quantitative metrics such as PSNR and SSIM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset