Some modal and temporal translations of generalized basic logic

06/10/2021
by   Wesley Fussner, et al.
0

We introduce a family of modal expansions of Łukasiewicz logic that are designed to accommodate modal translations of generalized basic logic (as formulated with exchange, weakening, and falsum). We further exhibit algebraic semantics for each logic in this family, in particular showing that all of them are algebraizable in the sense of Blok and Pigozzi. Using this algebraization result and an analysis of congruences in the pertinent varieties, we establish that each of the introduced modal Łukasiewicz logics has a local deduction-detachment theorem. By applying Jipsen and Montagna's poset product construction, we give two translations of generalized basic logic with exchange, weakening, and falsum in the style of the celebrated Gödel-McKinsey-Tarski translation. The first of these interprets generalized basic logic in a modal Łukasiewicz logic in the spirit of the classical modal logic S4, whereas the second interprets generalized basic logic in a temporal variant of the latter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset