Space-variant Generalized Gaussian Regularization for Image Restoration
We propose a new space-variant regularization term for variational image restoration based on the assumption that the gradient magnitudes of the target image distribute locally according to a half-Generalized Gaussian distribution. This leads to a highly flexible regularizer characterized by two per-pixel free parameters, which are automatically estimated from the observed image. The proposed regularizer is coupled with either the L_2 or the L_1 fidelity terms, in order to effectively deal with additive white Gaussian noise or impulsive noises such as, e.g, additive white Laplace and salt and pepper noise. The restored image is efficiently computed by means of an iterative numerical algorithm based on the alternating direction method of multipliers. Numerical examples indicate that the proposed regularizer holds the potential for achieving high quality restorations for a wide range of target images characterized by different gradient distributions and for the different types of noise considered.
READ FULL TEXT