Sparse Graph Learning for Spatiotemporal Time Series

05/26/2022
by   Andrea Cini, et al.
0

Outstanding achievements of graph neural networks for spatiotemporal time series prediction show that relational constraints introduce a positive inductive bias into neural forecasting architectures. Often, however, the relational information characterizing the underlying data generating process is unavailable; the practitioner is then left with the problem of inferring from data which relational graph to use in the subsequent processing stages. We propose novel, principled – yet practical – probabilistic methods that learn the relational dependencies by modeling distributions over graphs while maximizing, at the same time, end-to-end the forecasting accuracy. Our novel graph learning approach, based on consolidated variance reduction techniques for Monte Carlo score-based gradient estimation, is theoretically grounded and effective. We show that tailoring the gradient estimators to the graph learning problem allows us also for achieving state-of-the-art forecasting performance while controlling, at the same time, both the sparsity of the learned graph and the computational burden. We empirically assess the effectiveness of the proposed method on synthetic and real-world benchmarks, showing that the proposed solution can be used as a stand-alone graph identification procedure as well as a learned component of an end-to-end forecasting architecture.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset