Sparse Principal Component Analysis via Variable Projection
Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (variable projection). The framework incorporates a wide variety of sparsity-inducing regularizers for SPCA. We also extend the variable projection approach to robust SPCA, for any robust loss that can be expressed as the Moreau envelope of a simple function, with the canonical example of the Huber loss. Finally, randomized methods for linear algebra are used to extend the approach to the large-scale (big data) setting. The proposed algorithms are demonstrated using both synthetic and real world data.
READ FULL TEXT