Sparse Principal Component Analysis via Variable Projection

04/01/2018
by   N. Benjamin Erichson, et al.
0

Sparse principal component analysis (SPCA) has emerged as a powerful technique for modern data analysis. We discuss a robust and scalable algorithm for computing sparse principal component analysis. Specifically, we model SPCA as a matrix factorization problem with orthogonality constraints, and develop specialized optimization algorithms that partially minimize a subset of the variables (variable projection). The framework incorporates a wide variety of sparsity-inducing regularizers for SPCA. We also extend the variable projection approach to robust SPCA, for any robust loss that can be expressed as the Moreau envelope of a simple function, with the canonical example of the Huber loss. Finally, randomized methods for linear algebra are used to extend the approach to the large-scale (big data) setting. The proposed algorithms are demonstrated using both synthetic and real world data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset