Spatial Isolation Implies Zero Knowledge Even in a Quantum World

03/05/2018
by   Alessandro Chiesa, et al.
0

Zero knowledge plays a central role in cryptography and complexity. The seminal work of Ben-Or et al. (STOC 1988) shows that zero knowledge can be achieved unconditionally for any language in NEXP, as long as one is willing to make a suitable physical assumption: if the provers are spatially isolated, then they can be assumed to be playing independent strategies. Quantum mechanics, however, tells us that this assumption is unrealistic, because spatially-isolated provers could share a quantum entangled state and realize a non-local correlated strategy. The MIP* model captures this setting. In this work we study the following question: does spatial isolation still suffice to unconditionally achieve zero knowledge even in the presence of quantum entanglement? We answer this question in the affirmative: we prove that every language in NEXP has a 2-prover zero knowledge interactive proof that is sound against entangled provers; that is, NEXP ⊆ ZK-MIP*. Our proof consists of constructing a zero knowledge interactive PCP with a strong algebraic structure, and then lifting it to the MIP* model. This lifting relies on a new framework that builds on recent advances in low-degree testing against entangled strategies, and clearly separates classical and quantum tools. Our main technical contribution consists of developing new algebraic techniques for obtaining unconditional zero knowledge; this includes a zero knowledge variant of the celebrated sumcheck protocol, a key building block in many probabilistic proof systems. A core component of our sumcheck protocol is a new algebraic commitment scheme, whose analysis relies on algebraic complexity theory.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro