Spatial Logics and Model Checking for Medical Imaging (Extended Version)

Recent research on spatial and spatio-temporal model checking provides novel image analysis methodologies, rooted in logical methods for topological spaces. Medical Imaging (MI) is a field where such methods show potential for ground-breaking innovation. Our starting point is SLCS, the Spatial Logic for Closure Spaces -- Closure Spaces being a generalisation of topological spaces, covering also discrete space structures -- and topochecker, a model-checker for SLCS (and extensions thereof). We introduce the logical language ImgQL ("Image Query Language"). ImgQL extends SLCS with logical operators describing distance and region similarity. The spatio-temporal model checker topochecker is correspondingly enhanced with state-of-the-art algorithms, borrowed from computational image processing, for efficient implementation of distancebased operators, namely distance transforms. Similarity between regions is defined by means of a statistical similarity operator, based on notions from statistical texture analysis. We illustrate our approach by means of two examples of analysis of Magnetic Resonance images: segmentation of glioblastoma and its oedema, and segmentation of rectal carcinoma.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro