Spotting Micro-Expressions on Long Videos Sequences

12/26/2018
by   Jingting Li, et al.
0

This paper presents baseline results for the first Micro-Expression Spotting Challenge 2019 by evaluating local temporal pattern (LTP) on SAMM and CAS(ME)2. The proposed LTP patterns are extracted by applying PCA in a temporal window on several facial local regions. The micro-expression sequences are then spotted by a local classification of LTP and a global fusion. The performance is evaluated by Leave-One-Subject-Out cross validation. Furthermore, we define the criteria of determining true positives in one video by overlap rate and set the metric F1-score for spotting performance of the whole database. The F1-score of baseline results for SAMM and CAS(ME)2 are 0.0316 and 0.0179, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro