Stability issues of entropy-stable and/or split-form high-order schemes
The focus of the present research is on the analysis of local linear stability of high-order (including split-form) summation-by-parts methods, with e.g. two-point entropy-conserving fluxes, approximating non-linear conservation laws. Our main finding is that local linear stability is not guaranteed even when the scheme is non-linearly stable and that this has grave implications for simulation results. We show that entropy-conserving two-point fluxes are inherently locally linearly unstable, as they can be dissipative or anti-dissipative. Unfortunately, these fluxes are at the core of many commonly used high-order entropy-stable extensions, including split-form summation-by-parts discontinuous Galerkin spectral element methods (or spectral collocation methods). For the non-linear Burgers equation, we demonstrate numerically that such schemes cause exponential growth of errors. Furthermore, we demonstrate a similar abnormal behaviour for the compressible Euler equations. Finally, we demonstrate numerically that other commonly used split-forms, such as the Kennedy and Gruber splitting, are also locally linearly unstable.
READ FULL TEXT