Stability theory for some scalar finite difference schemes : Validity of the modified equations approach

04/27/2020
by   Firas Dhaouadi, et al.
0

In this paper, we discuss some limitations of the modified equations approach as a tool for stability analysis for a class of explicit linear schemes to scalar partial derivative equations. We show that the infinite series obtained by Fourier transform of the modified equation is not always convergent and that in the case of divergence, it becomes unrelated to the scheme. Based on these results, we explain when the stability analysis of a given truncation of a modified equation may yield a reasonable estimation of a stability condition for the associated scheme. We illustrate our analysis by some examples of schemes namely for the heat equation and the transport equation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset