Stacked Auto Encoder Based Deep Reinforcement Learning for Online Resource Scheduling in Large-Scale MEC Networks
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the mobile users, by optimizing offloading decision, transmission power, and resource allocation in the mobile edge computing (MEC) system. Towards this end, a deep reinforcement learning (DRL) method is proposed to obtain an online resource scheduling policy. Firstly, a related and regularized stacked auto encoder (2r-SAE) with unsupervised learning is proposed to perform data compression and representation for high dimensional channel quality information (CQI) data, which can reduce the state space for DRL. Secondly, we present an adaptive simulated annealing based approach (ASA) as the action search method of DRL, in which an adaptive h-mutation is used to guide the search direction and an adaptive iteration is proposed to enhance the search efficiency during the DRL process. Thirdly, a preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy. Numerical results are provided to demonstrate that the proposed algorithm can achieve near-optimal performance while significantly decreasing the computational time compared with existing benchmarks. It also shows that the proposed framework is suitable for resource scheduling problem in large-scale MEC networks, especially in the dynamic environment.
READ FULL TEXT