StakeDag: Stake-based Consensus For Scalable Trustless Systems
Trustless systems, such as those blockchain enpowered, provide trust in the system regardless of the trust of its participants, who may be honest or malicious. Proof-of-stake (PoS) protocols and DAG-based approaches have emerged as a better alternative than the proof of work (PoW) for consensus. This paper introduces a new model, so-called , which aims for PoS consensus in a DAG-based trustless system. We address a general model of trustless system in which participants are distinguished by their stake or trust: users and validators. Users are normal participants with a no assumed trust and validators are high profile participants with an established trust. We then propose a new family of stake-based consensus protocols S, operating on the DAG as in the Lachesis protocol lachesis01. Specifically, we propose a stake-based protocol S_ϕ that leverages participants' stake as validating weights to achieve more secure distributed systems with practical Byzantine fault tolerance (pBFT) in leaderless asynchronous Directed Acyclic Graph (DAG). We then present a general model of staking for asynchronous DAG-based distributed systems.
READ FULL TEXT