Statistical Learning for Individualized Asset Allocation

01/20/2022
by   Yi Ding, et al.
0

We establish a high-dimensional statistical learning framework for individualized asset allocation. Our proposed methodology addresses continuous-action decision-making with a large number of characteristics. We develop a discretization approach to model the effect from continuous actions and allow the discretization level to be large and diverge with the number of observations. The value function of continuous-action is estimated using penalized regression with generalized penalties that are imposed on linear transformations of the model coefficients. We show that our estimators using generalized folded concave penalties enjoy desirable theoretical properties and allow for statistical inference of the optimal value associated with optimal decision-making. Empirically, the proposed framework is exercised with the Health and Retirement Study data in finding individualized optimal asset allocation. The results show that our individualized optimal strategy improves individual financial well-being and surpasses benchmark strategies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset