Stochastic Galerkin method and port-Hamiltonian form for linear first-order ordinary differential equations

08/14/2023
by   Roland Pulch, et al.
0

We consider linear first-order systems of ordinary differential equations (ODEs) in port-Hamiltonian (pH) form. Physical parameters are remodelled as random variables to conduct an uncertainty quantification. A stochastic Galerkin projection yields a larger deterministic system of ODEs, which does not exhibit a pH form in general. We apply transformations of the original systems such that the stochastic Galerkin projection becomes structure-preserving. Furthermore, we investigate meaning and properties of the Hamiltonian function belonging to the stochastic Galerkin system. A large number of random variables implies a highdimensional stochastic Galerkin system, which suggests itself to apply model order reduction (MOR) generating a low-dimensional system of ODEs. We discuss structure preservation in projection-based MOR, where the smaller systems of ODEs feature pH form again. Results of numerical computations are presented using two test examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset