Stochastic Gradient Descent for Semilinear Elliptic Equations with Uncertainties
Randomness is ubiquitous in modern engineering. The uncertainty is often modeled as random coefficients in the differential equations that describe the underlying physics. In this work, we describe a two-step framework for numerically solving semilinear elliptic partial differential equations with random coefficients: 1) reformulate the problem as a functional minimization problem based on the direct method of calculus of variation; 2) solve the minimization problem using the stochastic gradient descent method. We provide the convergence criterion for the resulted stochastic gradient descent algorithm and discuss some useful technique to overcome the issues of ill-conditioning and large variance. The accuracy and efficiency of the algorithm are demonstrated by numerical experiments.
READ FULL TEXT