Stochastic-HMDs: Adversarial Resilient Hardware Malware Detectors through Voltage Over-scaling
Machine learning-based hardware malware detectors (HMDs) offer a potential game changing advantage in defending systems against malware. However, HMDs suffer from adversarial attacks, can be effectively reverse-engineered and subsequently be evaded, allowing malware to hide from detection. We address this issue by proposing a novel HMDs (Stochastic-HMDs) through approximate computing, which makes HMDs' inference computation-stochastic, thereby making HMDs resilient against adversarial evasion attacks. Specifically, we propose to leverage voltage overscaling to induce stochastic computation in the HMDs model. We show that such a technique makes HMDs more resilient to both black-box adversarial attack scenarios, i.e., reverse-engineering and transferability. Our experimental results demonstrate that Stochastic-HMDs offer effective defense against adversarial attacks along with by-product power savings, without requiring any changes to the hardware/software nor to the HMDs' model, i.e., no retraining or fine tuning is needed. Moreover, based on recent results in probably approximately correct (PAC) learnability theory, we show that Stochastic-HMDs are provably more difficult to reverse engineer.
READ FULL TEXT