Stochastic Solutions for Dense Subgraph Discovery in Multilayer Networks

11/07/2022
by   Yasushi Kawase, et al.
0

Network analysis has played a key role in knowledge discovery and data mining. In many real-world applications in recent years, we are interested in mining multilayer networks, where we have a number of edge sets called layers, which encode different types of connections and/or time-dependent connections over the same set of vertices. Among many network analysis techniques, dense subgraph discovery, aiming to find a dense component in a network, is an essential primitive with a variety of applications in diverse domains. In this paper, we introduce a novel optimization model for dense subgraph discovery in multilayer networks. Our model aims to find a stochastic solution, i.e., a probability distribution over the family of vertex subsets, rather than a single vertex subset, whereas it can also be used for obtaining a single vertex subset. For our model, we design an LP-based polynomial-time exact algorithm. Moreover, to handle large-scale networks, we also devise a simple, scalable preprocessing algorithm, which often reduces the size of the input networks significantly and results in a substantial speed-up. Computational experiments demonstrate the validity of our model and the effectiveness of our algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset