Strong Asymptotic Composition Theorems for Sibson Mutual Information
We characterize the growth of the Sibson mutual information, of any order that is at least unity, between a random variable and an increasing set of noisy, conditionally independent observations of the random variable. The Sibson mutual information increases to an order-dependent limit exponentially fast, with an exponent that is order-independent. The result is contrasted with composition theorems in differential privacy.
READ FULL TEXT