Strong Converse for Classical-Quantum Degraded Broadcast Channels
We consider the transmission of classical information through a degraded broadcast channel, whose outputs are two quantum systems, with the state of one being a degraded version of the other. Yard et al. proved that the capacity region of such a channel is contained in a region characterized by certain entropic quantities. We prove that this region satisfies the strong converse property, that is, the maximal probability of error incurred in transmitting information at rates lying outside this region converges to one exponentially in the number of uses of the channel. In establishing this result, we prove a second-order Fano-type inequality, which might be of independent interest. A powerful analytical tool which we employ in our proofs is the tensorization property of the quantum reverse hypercontractivity for the quantum depolarizing semigroup.
READ FULL TEXT